Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Mol Cell Biol ; 22(1): 46, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551723

RESUMO

BACKGROUND: MDM2 is an E3 ubiquitin ligase that is able to ubiquitinate p53, targeting it for proteasomal degradation. Its homologue MDMX does not have innate E3 activity, but is able to dimerize with MDM2. Although mouse models have demonstrated both MDM2 and MDMX are individually essential for p53 regulation, the significance of MDM2-MDMX heterodimerization is only partially understood and sometimes controversial. MDM2C462A mice, where the C462A mutation abolishes MDM2 E3 ligase activity as well as its ability to dimerize with MDMX, die during embryogenesis. In contrast, the MDM2Y487A mice, where the Y487A mutation at MDM2 C-terminus significantly reduces its E3 ligase activity without disrupting MDM2-MDMX binding, survive normally even though p53 is expressed to high levels. This indicates that the MDM2-MDMX heterodimerization plays a critical role in the regulation of p53. However, it remains unclear whether MDMX is essential for the regulation of p53 protein levels in the context of an endogenous MDM2 C-terminal tail mutation. RESULTS: Here, we studied the significance of MDM2-MDMX binding in an MDM2 E3 ligase deficient context using the MDM2Y487A mouse embryonic fibroblast (MEF) cells. Surprisingly, down-regulation of MDMX in MDM2Y487A MEFs resulted in a significant increase of p53 protein levels. Conversely, ectopic overexpression of MDMX reduced p53 protein levels in MDM2Y487A MEFs. Mutations of the RING domain of MDMX prevented MDMX-MDM2 binding, and ablated MDMX-mediated suppression of p53 protein expression. Additionally, DNA damage treatment and nuclear sequestration of MDMX inhibited MDMX activity to suppress p53 protein expression. CONCLUSIONS: These results suggest that MDMX plays a key role in suppressing p53 protein expression in the absence of normal MDM2 E3 ligase activity. We found that the ability of MDMX to suppress p53 levels requires MDM2 binding and its cytoplasmic localization, and this ability is abrogated by DNA damage. Hence, MDMX is essential for the regulation of p53 protein levels in the context of an MDM2 C-terminal mutation that disrupts its E3 ligase activity but not MDMX binding. Our study is the first to examine the role of MDMX in the regulation of p53 in the context of endogenous MDM2 C-terminal mutant MEF cells.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Animais , Fibroblastos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
2.
PLoS Genet ; 11(10): e1005599, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26452058

RESUMO

In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Acetil-CoA Carboxilase/genética , Proteínas E1A de Adenovirus/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Acetil-CoA Carboxilase/antagonistas & inibidores , Proteínas E1A de Adenovirus/biossíntese , Apoptose/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-ets , Microambiente Tumoral/genética
3.
Cancer Cell ; 26(2): 235-47, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25117711

RESUMO

Mdm2 E3 ubiquitin ligase-mediated p53 degradation is generally accepted as the major mechanism for p53 regulation; nevertheless, the in vivo significance of this function has not been unequivocally established. Here, we have generated an Mdm2(Y487A) knockin mouse; Mdm2(Y487A) mutation inactivates Mdm2 E3 ligase function without affecting its ability to bind its homolog MdmX. Unexpectedly, Mdm2(Y487A/Y487A) mice were viable and developed normally into adulthood. While disruption of Mdm2 E3 ligase function resulted in p53 accumulation, p53 transcriptional activity remained low; however, exposure to sublethal stress resulted in hyperactive p53 and p53-dependent mortality in Mdm2(Y487A/Y487A) mice. These findings reveal a potentially dispensable nature for Mdm2 E3 ligase function in p53 regulation, providing insight that may affect how this pathway is targeted therapeutically.


Assuntos
Dano ao DNA , Desenvolvimento Embrionário/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Reparo do DNA , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Especificidade de Órgãos , Ligação Proteica , Multimerização Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Tolerância a Radiação/genética , Ubiquitinação
4.
Proc Natl Acad Sci U S A ; 111(23): E2414-22, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24872453

RESUMO

The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Carboxiliases/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Jejum , Fígado Gorduroso/genética , Fígado Gorduroso/fisiopatologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Immunoblotting , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/fisiologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Transcriptoma/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Redução de Peso/genética , Redução de Peso/fisiologia
5.
Genes Cancer ; 3(3-4): 219-25, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23150755

RESUMO

Classically, p53 is considered to be an overarching tumor suppressor gene, important in its role as a transcription factor for a number of genes critical for cell cycle arrest, apoptosis, and senescence. More recently, the scope of p53 function has been further broadened, with evidence emerging that supports essential roles for p53 in reproduction and metabolism. The homologous proteins Mdm2 and MdmX function as the primary negative regulators of p53 stability and activity. Canonically, Mdm2 is thought to regulate p53 through 2 mechanisms: 1) through directly binding the p53 transactivation domain, suppressing p53 activity, and 2) through functioning as an E3 ubiquitin ligase capable of ubiquitinating p53, targeting it for nuclear export and degradation. MdmX similarly functions to bind the p53 transactivation domain; however, it is not characterized to harbor any intrinsic E3 ubiquitin ligase activity. Despite extensive study, the advent of a number of mouse models has brought to light the necessity of studying the p53 pathway at physiological levels and emphasized the major differences that can exist between in vitro and in vivo analysis. While many questions remain, a focus on the use of in vivo models in p53 study is providing a clearer view of how this pathway is regulated, with a newfound emphasis on the role of the Mdm2:MdmX heterodimer, and with that a better understanding of how this pathway could be better manipulated for therapeutic gains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...